Learning Discriminative Projections for Text Similarity Measures

نویسندگان

  • Wen-tau Yih
  • Kristina Toutanova
  • John C. Platt
  • Christopher Meek
چکیده

Traditional text similarity measures consider each term similar only to itself and do not model semantic relatedness of terms. We propose a novel discriminative training method that projects the raw term vectors into a common, low-dimensional vector space. Our approach operates by finding the optimal matrix to minimize the loss of the pre-selected similarity function (e.g., cosine) of the projected vectors, and is able to efficiently handle a large number of training examples in the highdimensional space. Evaluated on two very different tasks, cross-lingual document retrieval and ad relevance measure, our method not only outperforms existing state-of-the-art approaches, but also achieves high accuracy at low dimensions and is thus more efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning spoken document similarity and recommendation using supervised probabilistic latent semantic analysis

This paper presents a model-based approach to spoken document similarity called Supervised Probabilistic Latent Semantic Analysis (PLSA). The method differs from traditional spoken document similarity techniques in that it allows similarity to be learned rather than approximated. The ability to learn similarity is desirable in applications such as Internet video recommendation, in which complex...

متن کامل

Alignment-Based Discriminative String Similarity

A character-based measure of similarity is an important component of many natural language processing systems, including approaches to transliteration, coreference, word alignment, spelling correction, and the identification of cognates in related vocabularies. We propose an alignment-based discriminative framework for string similarity. We gather features from substring pairs consistent with a...

متن کامل

Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors

This paper proposes learning a non-linear transform with two priors. The first is a discriminative prior defined using a measures on a support intersection and the second is a minimum information loss prior expressed as a constraint on the conditioning and the coherence. An approximation of the measures for the discriminative prior is addressed, connecting it to a similarity concentrations. Alo...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Discriminative Similarity for Clustering and Semi-Supervised Learning

Similarity-based clustering and semi-supervised learning methods separate the data into clusters or classes according to the pairwise similarity between the data, and the pairwise similarity is crucial for their performance. In this paper, we propose a novel discriminative similarity learning framework which learns discriminative similarity for either data clustering or semi-supervised learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011